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Abstract

This work provides a generalized theory of proton relaxation in inhomogeneous magnetic fields. Three asymptotic regimes of relax-
ation are identified depending on the shortest characteristic time scale. Numerical simulations illustrate that the relaxation characteristics
in the regimes such as the T1/T2 ratio and echo spacing dependence are determined by the time scales. The theoretical interpretation is
validated for fluid relaxation in porous media in which field inhomogeneity is induced due to susceptibility contrast of fluids and para-
magnetic sites on pore surfaces. From a set of measurements on model porous media, we conclude that when the sites are small enough,
no dependence on echo spacing is observed with conventional low-field NMR spectrometers. Echo spacing dependence is observed when
the paramagnetic materials become large enough or form a ‘shell’ around each grain such that the length scale of the region of induced
magnetic gradients is large compared to the diffusion length during the time of the echo spacing. The theory can aid in interpretation of
diffusion measurements in porous media as well as imaging experiments in presence of contrast agents used in MRI.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Inhomogeneous magnetic fields are employed for several
applications in NMR relaxometry and imaging. For exam-
ple, field gradients of the order of 10–100 T/m are applied
in Stray Field Imaging for high resolution of systems with
broad line widths [1–4]. Functional MRI utilizes the inho-
mogeneous field induced by paramagnetic contrast agents
for increasing sensitivity and specificity [5,6]. The field gra-
dient generated by oil well-logging tools is utilized for iden-
tification of hydrocarbons in earth’s formation [7,8].

In this paper, we provide a theoretical and experimental
framework for understanding proton relaxation in inho-
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2007.09.019

q Paper was presented at 48th Annual Symposium of Society of
Petrophysicists and Well Log Analysts.

* Corresponding author. Fax: +1 281 285 8071.
E-mail address: vanand@slb.com (V. Anand).
mogeneous magnetic fields. Field inhomogeneity can be
applied externally or induced internally within the system
due to difference in magnetic susceptibility of constituents.
Diffusion of fluid molecules in inhomogeneous fields leads
to additional relaxation of transverse magnetization due to
loss of phase coherence. The additional relaxation is called
‘‘secular relaxation’’ [9] and is defined as the difference in
transverse and longitudinal relaxation rates.

1

T 2;sec

¼ 1

T 2

� 1

T 1

ð1Þ

We focus on secular relaxation in water-saturated porous
media although the theory is applicable for any system in
which inhomogeneous fields are present.

At present, there is no exact theory which explains secular
relaxation in porous media in a general inhomogeneous field.
However, two ideal cases of relaxation in a constant gradient
and relaxation in an inhomogeneous field induced by
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paramagnetic spheres have been described analytically in the
past. DeSwiet et al. [10] described three length scales that
characterize secular relaxation in a constant gradient g:

(1) Pore structural length, Ls

(2) Diffusion length, Ld, defined asffiffiffiffiffiffiffiffip

Ld ¼ DsE ð2Þ
where D is the diffusivity of the fluid and sE is the
echo spacing for CPMG pulse sequence

(3) Dephasing length, Lg, defined as the distance over
which the spins have to diffuse in order to dephase
by 1 radian given asffiffiffiffiffis

Lg ¼

D
cg

3 ð3Þ
where c is the proton gyromagnetic ratio. Depending
on the smallest length scale, secular relaxation can be
characterized into three relaxation regimes of
motionally averaging, free diffusion and localization.
Similarly, secular relaxation in the field induced by
paramagnetic spheres has been classified into regimes
of motionally averaging, weak magnetization and
strong magnetization depending on three characteris-
tic time scales [9,11,12]. Analytical expressions for
secular relaxation rates have been proposed for the
different asymptotic regimes.

This study proposes a generalized relaxation theory
which extends the definition of the asymptotic regimes
defined for the ideal case of diffusion in a constant gradient
to general inhomogeneous fields. The regimes are deter-
mined by the shortest characteristic time scale [11], which
can be defined for a general inhomogeneous field, rather
than the smallest length scale. The time scales also quantify
the characteristics of the relaxation regimes such as echo
spacing dependence and T1/T2 ratio.

The paper is organized as follows. In Section 2, the gener-
alized theory of secular relaxation in inhomogeneous fields is
provided. The theory is independent of the particular choice
of the inhomogeneous field distribution. Section 3 illustrates
the dependence of characteristic time scales in sedimentary
rocks on governing parameters such as the concentration
and the size of paramagnetic particles. Section 4 describes
random walk simulations of the secular relaxation in the field
induced by paramagnetic spheres to quantitatively illustrate
the characteristics of the relaxation regimes. Sections 5 and 6
describe a series of NMR measurements that physically
explore relaxation regimes in porous media.

2. Generalized secular relaxation theory

2.1. Characteristic time scales for secular relaxation

Transverse relaxation due to dephasing in magnetic field
inhomogeneities is characterized by three time scales [11]:
(1) time taken for significant dephasing, sx, defined as
the inverse of the spread in Larmor frequencies
(dx) existing in the system
sx ¼
1

dx
ð4Þ
(2) diffusional correlation time, sR, defined as the time
taken to diffusionally average the inhomogeneities
sR ¼
L2

D
ð5Þ
where L is the characteristic length of field inhomoge-
neity in the system, and

(3) half echo spacing used in CPMG pulse sequence, sE,
given as
sE ¼
TE
2

ð6Þ
where TE is the echo spacing for the CPMG
sequence.

The length scale of the field inhomogeneity (L) and
spread in Larmor frequencies (dx) depend on particular
system parameters. For example, let us consider the char-
acteristic time scales for two cases of relaxation in a con-
stant gradient and in the field induced by paramagnetic
spheres.

1. Restricted diffusion in a constant gradient: For the case
of restricted diffusion in a constant gradient g in a pore,
field inhomogeneity exists over the entire length of the
pore. Therefore, the diffusional correlation time and
time for significant dephasing are given as

sR ¼
L2

s

D
ð7Þ

sx ¼
1

dx
¼ 1

cgLs

ð8Þ

where Ls is the structural length of the pore.
2. Relaxation in the field induced by a paramagnetic sphere:

A paramagnetic particle of magnetic susceptibility differ-
ent from that of the surrounding medium induces mag-
netic field inhomogeneities when placed in an external
magnetic field. Potential theory can be used to estimate
the induced fields in idealized geometries. The component
of the field induced by a paramagnetic sphere along the
direction of the external field ~B0 is given as [13]
Bdz ¼ B0

k � 1

k þ 2

� �
ð3 cos2 h� 1ÞR

3
0

r3
ð9Þ

where R0 is the radius of the sphere, k = (1 + vsphere)/
(1 + vmedium), vsphere and vmedium are magnetic susceptibili-
ties of the sphere and the medium respectively. h is the azi-
muthal angle from the direction of ~B0, and r is the radial
distance from the center of the paramagnetic sphere. The
component of the induced field along the external magnetic
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field is considered since this component determines the pre-
cession frequency. Eq. (9) shows that the induced field is
maximum at the surface of the sphere (positive at poles
and negative at equator) and falls as the cube of the radial
distance from the center. Thus, the range of Larmor fre-
quencies in the system is the difference in polar and equa-
torial fields at the surface of the sphere given as

dx ¼ 3ðk � 1Þ
ðk þ 2Þ cB0 ð10Þ

sx is given by the reciprocal of dx. In addition, field inho-
mogeneity extends to distances proportional to the radius
of the sphere. Thus, sR is given as

sR ¼
R2

0

D
ð11Þ
2.2. Asymptotic regimes of secular relaxation

Depending on the shortest characteristic time scale, sec-
ular relaxation in inhomogeneous fields can be character-
ized by three regimes of motionally averaging, free
diffusion and localization. A description of the regimes is
provided in this section. For each regime, the cases of
relaxation in a constant gradient and relaxation in the field
induced by paramagnetic spheres are also included. It is
instructive to note that even though the two systems have
very different field distribution, the relaxation rates in a
particular regime are similar when expressed in terms of
characteristic time scales. This correspondence proves that
the time scales are the governing parameters that describe
relaxation in inhomogeneous fields.

Motionally averaging regime: The motionally averaging
regime is characterized by fast diffusion of protons such
that the inhomogeneities in magnetic field are motionally
averaged [9]. This averaging occurs when the diffusional
correlation time is much shorter compared to the half echo
spacing and the time taken for significant dephasing due to
field inhomogeneities. Thus, the conditions of motionally
averaging regime are

sR � sx

sR � sE

ð12Þ
1. Motionally averaging regime in a constant gradient: The
conditions for motionally averaging in a constant gradi-
ent in a pore of length Ls can be obtained in terms of the
characteristic length scales (Eqs. (2) and (3)) by substi-
tuting Eqs. (7) and (8) in Eq. (12) given as

Ls � Lg

Ls � Ld

ð13Þ

Eq. (13) imply that the motionally averaging regime is
observed when the pore structural length is small com-
pared to the diffusion length during time sE (Ld) and
the dephasing length (Lg). Thus, the spins typically
diffuse several times the pore size during the measure-
ment and any magnetic field inhomogeneities are aver-
aged by their motion.
Neumann [14] derived the expression for the secular
relaxation rate in the motionally averaging regime by
assuming the distribution of phase shifts to be Gaussian
given as

1

T 2;sec

¼ L4
s c

2g2

120D
ð14Þ

Using Eqs. (7) and (8), Eq. (14) can be expressed in
terms of characteristic parameters as shown

1

T 2;sec

¼ 1

120
dx2sR ð15Þ

Thus, the relaxation rate is independent of the echo
spacing and shows a quadratic dependence on field
inhomogeneity (dx) in the motionally averaging regime.
This quadratic dependence on field inhomogeneity was
also derived for a non-constant field gradient in one-
dimensional restricted geometry by Tarczon et al. [15].

2. Motionally averaging regime in internal fields induced
by paramagnetic spheres: Motionally averaging regime
for relaxation by paramagnetic spheres arises when the
diffusional correlation time (Eq. (11)) is the shortest time
scale. Thus, the conditions for motionally averaging
regime in terms of system parameters are
R2
0

D
� sE

R2
0

D
� sx ¼

1

dx
¼ ðk þ 2Þ

3ðk � 1ÞcB0

ð16Þ

The expression for dx in Eq. (16) is substituted from
Eq. (10). The quantum-mechanical outer sphere the-
ory suggests that when conditions for motionally aver-
aging are satisfied, the secular relaxation rate is given
as [9]

1

T 2;sec

¼ 16

405
Udx2sR ¼

16

45D
U
ðk � 1Þ
k þ 2ð Þ cB0R0

� �2

ð17Þ

where U is the volume fraction of the paramagnetic parti-
cles. Eq. (17) is derived by solving quantum-mechanical
equations for the ‘‘flip rates’’ of the protons using time
dependent perturbation theory [9]. Note the similar func-
tional form of the secular relaxation rate predicted by the
outer sphere theory (Eq. 17) and Eq. 15.

Free diffusion regime: This regime is valid when the
half echo spacing is the shortest characteristic time scale.
The effect of restriction as well as large field inhomoge-
neities is not felt by the spins in the time of echo forma-
tion. Thus, the spins dephase as if diffusing in an
unrestricted medium. The conditions for the free diffu-
sion regime are

sE � sx

sE � sR

ð18Þ
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1. Free diffusion in a constant gradient: For the case of dif-
fusion in a constant gradient in a pore, the free diffusion
regime may arise for small echo spacing such that the
spins do not experience the restriction effects in the time
of echo formation. The conditions for free diffusion
inside a pore of length Ls can be obtained in terms of
the characteristic length scales by substituting Eqs. (7)
and (8) in Eq. (18) given as

Ld � Lg

Ld � Ls

ð19Þ

Thus, the free diffusion regime arises when the diffusion
distance in sE is much smaller compared to the dephas-
ing length and the pore length. In this regime, the secu-
lar relaxation rate is given by the classical expression
derived by Carr and Purcell [16] for unrestricted diffu-
sion in a constant gradient

1

T 2;sec

¼ c2g2s2
ED

3
ð20Þ

Substituting Eqs. (4)–(6) in Eq. (20), the relaxation rate
in constant gradient can be written as

1

T 2;sec

¼ dx2s2
E

3sR

ð21Þ

2. Free diffusion in internal fields induced by paramagnetic
spheres: The free diffusion regime has been described as
the ‘‘weak magnetization regime (dx Æ sE < 1)’’ in the
magnetic resonance imaging (MRI) literature mentioned
below. The regime arises physically when weakly magne-
tized paramagnetic particles are used as contrast agents
for medical imaging or in biological tissues with iron rich
cells or deoxygenated red blood cells [17]. Brooks et al.
[11] calculated the mean squared gradient of the mag-
netic field induced by a paramagnetic sphere given as
hg2i ¼ 4Udx2

5c2R2
0

ð22Þ

Substituting Eq. (22) in the expression for the relaxation
rate in unrestricted diffusion (Eq. (20)) and accounting
for restriction from neighboring particles, the relaxation
rate in the presence of weakly magnetized spheres is given
as [11]

1

T 2;sec

¼ Udx2s2
E

5sR

¼ 9U
5

ðk � 1Þ
ðk þ 2Þ cB0

� �2 s2
ED

R2
0

ð23Þ

The above expression (called the Mean Gradient Diffusion
Theory, MGDT) shows the similar quadratic dependence
of secular relaxation rate on the echo spacing as the expres-
sion for unrestricted diffusion in a constant gradient (Eq.
(21)). However, the relaxation rate shows an inverse
squared dependence on the paramagnetic particle size
which is opposite to that in the motionally averaging re-
gime (Eq. (17)). This inverse dependence arises because
the mean squared field gradient in Eq. (22) decreases as
the square of the particle size.

Localization regime: Localization regime of secular
relaxation arises when the dephasing time is the shortest
time scale. The conditions for the localization regime are

sx � sR

sx � sE

ð24Þ
1. Localization regime in a constant gradient: Using Eqs.
(7) and (8) for dx and sR for restricted diffusion in a con-
stant gradient in a pore of length Ls, Eq. (24) reduces to
the following equations in special cases

Lg � Ld

Lg � Ls

ð25Þ

Thus, the dephasing length (Lg) is the smallest charac-
teristic length in the localization regime. The spins typi-
cally dephase to such an extent during the measurement
time that they do not contribute to the total magnetiza-
tion. The signal comes primarily from the spins near the
boundaries which see smaller change in the magnetic
field due to reflection [18]. DeSwiet et al. [10] have
shown that at long times, the echo amplitude in the
localization regime decays as

Mðg; sEÞ
M0

¼ c
D

cgL3
s

� �1=3

e�a1 Dc2g2s3
Eð Þ1=3

ð26Þ

where a1 = 1.0188. . . and c = 5.8841. . . for parallel
plates.

2. Localization regime in internal fields induced by para-
magnetic spheres: Secular relaxation in the localization
regime has also been discussed in the MRI literature.
The regime arises physically for relaxation in presence
of strongly magnetized contrast agents such as super-
paramagnetic particles for which dxsE > 1. Gillis et al.
[12] proposed a semi-empirical model for decay in inter-
nal fields induced by strongly magnetized spheres. In
their model, the region surrounding the paramagnetic
sphere is divided into two regions: an inner region with
very strong internal gradients and an outer region with
only weak gradients. Since the gradients in the outer
region are weak, Gillis et al. [12] suggested that relaxa-
tion in the outer region can be described by theory for
weakly magnetized particles. Thus, the relaxation rate
in the outer region is given by Eq. (23) with a modifica-
tion to account for the excluded volume of the inner
region as shown below
1

T 2;sec

¼ Udx2s2
E

5sR

dxsE

aþ bUdxsE

� ��5=3

ð27Þ

The values of the parameters a (=4.5) and b (=0.99) were
calculated by Gillis et al. [12] by fitting Eq. (27) to numer-
ical simulations of transverse relaxation in the presence of
strongly magnetized spheres.
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In the inner region, the spins experience strong gradients
and dephase very rapidly. Due to rapid dephasing, they do
not contribute significantly to the macroscopic relaxation
rate; therefore Eq. (27) provides an accurate estimate of
relaxation rate in presence of strongly magnetized particles.
3. Relaxation regimes in sandstones

The previous section described the classification of secu-
lar relaxation in asymptotic regimes depending on the char-
acteristic time scales. We can obtain physical insight of the
different regimes by considering the example of secular
relaxation of fluids in sandstones. Sedimentary rocks usu-
ally contain paramagnetic minerals such as iron on the sur-
faces of silica grains [19]. Thus, the relaxation of pore fluids
can be influenced by field inhomogeneities induced due to
susceptibility differences between pore fluids and the para-
magnetic minerals. For the case of paramagnetic relaxation
in sedimentary rocks, the characteristic time scales depend
not only on the size and susceptibility of paramagnetic par-
ticles but also on the concentration of particles and the size
of silica grains. The two cases of dilute and high surface
concentrations of the paramagnetic particles are described
below.
3.1. Paramagnetic particles at dilute surface concentration

At low concentrations of paramagnetic particles on sil-
ica surfaces, there is negligible superposition of the fields
induced by individual particles. Fig. 1 shows the contour
plots of the longitudinal component of the internal field
Fig. 1. Contour plots of induced magnetic field in the outer region of a
silica grain coated with paramagnetic spheres at dilute concentrations (No.
of particles per unit area �3). The ratio of the radius of the silica grain to
that of paramagnetic particles is 10. At low concentrations, there is
insignificant superposition of fields induced by neighboring particles.
in the outer region of a silica grain coated with paramag-
netic spheres at dilute concentration. The particles are sep-
arated far enough from each other such that the field
induced by one particle is not significantly influenced by
the fields induced by neighboring particles. Due to insignif-
icant superposition, the protons in the outer region of the
grain dephase as if diffusing in an internal field induced
by a single paramagnetic sphere. Thus, the asymptotic
regimes mentioned for a single sphere are applicable for
describing secular relaxation in sandstones with dilute
paramagnetic concentration. The spread in Larmor fre-
quency (dx) and diffusional correlation time (sR) are given
by Eqs. (10) and (11) defined for a single paramagnetic
sphere.

3.2. Paramagnetic particles at high surface concentration

At high surface concentration of paramagnetic particles,
the internal fields induced by individual particles overlap.
Thus, the inhomogeneous field extends to larger distances
than at lower surface concentrations due to superposition.
Fig. 2 shows the contour plots of the internal field in the
outer region of a grain coated with paramagnetic spheres
at high concentration. Strong field gradients are induced
close to the surface of the particles. In addition, the fields
induced by neighboring particles superpose and extend to
a length scale comparable to the size of the substrate silica
grain.

At high concentrations, the particles can be visualized
as forming a paramagnetic ‘‘shell’’ around the silica grain.
ig. 2. Contour plots of magnetic field in the outer region of a silica grain
oated with paramagnetic spheres at high concentrations (No. of particles
er unit area �30). The ratio of radius of the silica grain to that of
aramagnetic particles is 10. At high concentrations, induced field extends

distance proportional to the radius of the silica grain due to
perposition of fields induced by neighboring particles.
F
c
p
p
to
su
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Consider a grain of radius Rg coated with a paramagnetic
shell of thickness e. The internal field induced by the para-
magnetic shell can be calculated by subtracting the field
induced by a sphere of radius Rg from the field induced
by a concentric sphere of radius Rg + e. Thus, the internal
field contribution of only the spherical shell survives.
Using Eq. (9) for the field induced by a paramagnetic
sphere, the field distribution for a paramagnetic shell is
given as

Bdz ¼
ðk � 1ÞB0ð3 cos2 h� 1Þ

ðk þ 2Þ
ðRg þ eÞ3

r3
�

R3
g

r3

" #
; r > Rg þ e

� ðk � 1ÞB0ð3 cos2 h� 1Þ
ðk þ 2Þ

3eR2
g

r3
; e� Rg

ð28Þ

Similar to the field distribution of a solid sphere (Eq. (9)),
the field is maximum at the surface of the shell (positive at
poles and negative at equator) and falls as the cube of the
radial distance. Thus, the range of Larmor frequencies is
the difference in polar and equatorial frequencies at the sur-
face given as

dxshell �
ðk � 1ÞcB0

ðk þ 2Þ
9e
Rg

ð29Þ

The frequency range (dxshell) is proportional to the ratio of
the thickness of the paramagnetic shell to the radius of the
silica grain. As a validation of this relationship, consider
the limiting case of the field induced by an infinite para-
magnetic sheet (Rg fi1). A paramagnetic sheet perpendic-
ular to an externally applied field does not induce any field
gradients since the field lines still remain parallel. This is
also quantitatively verified by Eq. (29) which shows
dxshell fi 0 as Rg fi1.

Eq. (29) shows that the frequency range for a paramag-
netic shell decreases by a factor 3e/Rg in comparison to that
for a single solid sphere (Eq. (10)). Thus, the time for sig-
nificant dephasing (sx) increases by the same factor. In
addition, the field inhomogeneity extends to a length scale
comparable to the size of the substrate silica grain. Thus,
for a close-packing structure of silica grains in sandstones,
the length scale of field inhomogeneity (L) is proportional
to the dimension of the interstitial pore between the grains
given as [20]

L ¼ 0:225Rg ð30Þ

Therefore, sR increases as the square of the silica grain ra-
dius rather than the paramagnetic particle radius. For suf-
ficiently coarse grained sandstones, sR can become larger
than sx. Hence, the system can experience the localization
regime (if sx < sE) or the free diffusion regime (if sE < sx)
even if silica grains are coated with fine-sized paramagnetic
particles.

In addition to dx, the paramagnetic volume fraction (U)
also changes at the transition from an individual particle at
low concentration to a shell at high concentrations. At low
concentrations, U is the ratio of the volume of the para-
magnetic particles to the total volume. However, at high
concentrations, U corresponds to the solid matrix volume
fraction since the particles cover the surface of silica grains.
The condition for transition from individual particle at low
concentration to a paramagnetic shell at high concentra-
tion is

ðdxUÞparticle ¼ ðdxUÞshell ð31Þ

This condition ensures that the secular relaxation rates
vary smoothly at the transition.

4. Random walk simulations

The relaxation rates of Section 2 are valid only in
asymptotic regions of the parameter space spanned by
the three characteristic time scales. To provide a quantita-
tive understanding of secular relaxation in the entire
parameter space, random walk simulations are performed.
Secular relaxation in an inhomogeneous field induced in
the annular region outside a paramagnetic sphere is mod-
eled. This model is chosen because relaxation rates in
asymptotic regions of the parameter space are known ana-
lytically. Few simplifying assumptions are made. Surface
relaxation at the inner radius (R0) and the outer radius
(Re) of the annulus is neglected. It is also assumed that
spin-echoes are measured by CPMG pulse sequence with
ideal pulses. The theory is presented in terms of dimension-
less quantities so that the results are invariant under
changes in particular system parameters.

4.1. Governing Bloch–Torrey equations

The relaxation of transverse magnetization (M) in an
inhomogeneous field Bz after the application of the first
p/2 pulse is given by the Bloch–Torrey equation

oM
ot
¼ �icBzM �

M
T 2;B

þ Dr2M ð32Þ

where D is the diffusivity of the fluid and T2,B is the bulk
relaxation time. By substituting M ¼ Mx þ iMy and M ¼

m � e
�ix0tþ �t

T 2;B

� �
, Eq. (32) can be expressed as

om
ot
¼ �icBdzmþ Dr2m ð33Þ

Here m represents the transverse magnetization with the
precession at the Larmor frequency (x0 = cB0) and the
bulk relaxation factored out [21]. Bdz (=Bz � B0) is the
component of the internal field along the direction of the
externally applied field.

The following dimensionless variables are introduced to
normalize Eq. (33)

r� ¼ r
Re

; t� ¼ t
t0

; m� ¼ m
M0

where t0 is a characteristic time and M0 is the initial mag-
netization. Substituting the dimensionless variables and
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Eq. (9) for the internal field induced by a paramagnetic
sphere in Eq. (33), the following dimensionless equation
is obtained

om�

ot�
¼ �i

ð3 cos2 h� 1Þ
r�3

cB0ðk � 1Þ
ðk þ 2Þ

R0

Re

� �3

t0

 !
m�

þ NDr�2m� ð34Þ

where dimensionless group ND is defined as

ND ¼
Dt0

R2
e

ð35Þ

The characteristic time t0 is chosen such that the coefficient
of the second term in Eq. (34) is unity. Thus,

t0 ¼
ðk þ 2Þ

cB0ðk � 1Þ

� �
1

U
ð36Þ

where U is the volume fraction of the paramagnetic particle
given as

U ¼ R0

Re

� �3

ð37Þ

Using Eq. (10) for the frequency range (dx) of the inhomo-
geneous field induced by the paramagnetic sphere, t0 can
also be expressed as

) t0 ¼
3

Udx
ð38Þ

Eq. (38) is used to normalize secular relaxation rates for the
experimental systems as described in Section 6. The dimen-
sionless parameter, ND, can be expressed in terms of system
parameters by substituting Eq. (36) in Eq. (35)

ND ¼
Dt0

R2
e

¼ ðk þ 2ÞDRe

ðk � 1ÞcB0R3
0

¼ 3

ðdxsRÞU1=3
ð39Þ

Eq. (39) shows that ND is not an independent dimensionless
group but is specified if two dimensionless parameters
dxsR and U are specified. Thus, the governing Bloch equa-
tion in dimensionless form becomes

om�

ot�
¼ �i

ð3 cos2 h� 1Þ
r�3

m� þ NDr�2m� ð40Þ

No surface relaxation at the inner and outer boundary
implies

om�

or�
¼ 0 at r� ¼ 1 and r� ¼ R0

Re

ð41Þ

In addition, the application of p pulse at dimensionless half
echo spacing s�E reverses the y component of the magnetiza-
tion. Thus,

m�jt�� ¼ m�jt�þ ð42Þ

at t� ¼ s�E; 3s�E, 5s�E . . . where the dimensionless half echo
spacing, s�E, is given as

s�E ¼ sE=t0 ð43Þ
A continuous random walk algorithm [22] is applied to
numerically integrate the dimensionless equations. Secular
relaxation of protons in the field induced by a paramag-
netic sphere of susceptibility 0.2 (SI units) surrounded by
a medium of susceptibility �0.8 · 10�6 (SI units) is simu-
lated. These values of susceptibilities are representative of
magnetite and water respectively. The external magnetic
field B0 corresponds to a proton Larmor frequency of
2 MHz. The radius of the paramagnetic sphere is varied
from 10 nm to 25 lm. For each particle size, simulations
with several values of sE are performed to illustrate the
echo spacing dependence of secular relaxation in different
regimes. The dimensionless relaxation rate is calculated
from the slope of exponential fit to the simulated echo
intensities. However, the magnetization decay is multi-
exponential for simulations such that dxsR > 1000. For
such cases, the relaxation rate is calculated from the slow-
est component of the multi-exponential decay. The details
of the algorithm are mentioned in the Appendix.
4.2. Results and discussion

Secular relaxation can be classified in three asymptotic
regimes (Section 2) depending on two dimensionless
parameters: normalized diffusional correlation time dxsR,
and normalized echo spacing dxsE. Fig. 3 shows the plot
of simulated dimensionless relaxation rates ð1=T D

2;secÞ as a
function of dxsR for different values of dxsE. The super-
script ‘‘D’’ refers to the dimensionless relaxation rate. dx
and sR are calculated from Eqs. (10) and (11) respectively
for the specified values of radius and susceptibility of the
paramagnetic sphere. The plots of theoretical relaxation
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rates are also shown for comparison in the respective
regimes of validity. Thus the solid, dotted and dash-dotted
lines are the plots of theoretical relaxation rates (Eqs. (17),
(23), (27)) normalized by the characteristic rate 1/t0. The
dashed lines are the boundaries dxsR = 1 and dxsE = 1
that delineate the asymptotic regimes. Note that the relax-
ation rates can be made dimensional by using the following
equation.

1

T 2;sec

¼ 1

t0T D
2;sec

¼ ðk � 1ÞcB0U
ðk þ 2Þ

� �
1

T D
2;sec

ð44Þ

The characteristics of secular relaxation rate in Fig. 3
can be described in terms of the three regimes:

1. Motionally averaging regime: Motionally averaging
regime exists for dxsR� 1 and sufficiently large values
of dxsE� 1. In this regime, secular relaxation rates
are independent of the echo spacing because the field
inhomogeneities are averaged in time much shorter com-
pared to sE. In addition, the rates increase with sR and
thus, with the particle size. A physical understanding
for the dependence of relaxation rate on sR can be
obtained by considering the chemical exchange (CE)
model of transverse relaxation [23–25]. The CE model
consists of two sites A and B with a frequency shift
(dx) between them and the protons are chemically
exchanging between the sites with an exchange time
sex. The phenomenon of transverse relaxation due to
chemical exchange between sites is analogous to secular
relaxation due to diffusion between continuous spectrum
of frequencies in the random walk model. The presence
of only two discrete chemical shifts and no diffusion con-
tribution makes the integration of Bloch equation in the
CE model easier. Thus, physical insight about secular
relaxation can be gained by analyzing the relaxation
rates predicted by the CE model. The fraction of protons
in the two sites is given by FA and FB respectively. When
FB� 1, the relaxation rate is given as [24]

1

T 2

¼ F Bsex

ðdxÞ2

ð1þ ðdxÞ2s2
exÞ

ð45Þ

In motionally averaging regime (dxsex� 1) of the CE
model, Eq. (45) reduces to

1

T 2

ffi F BsexðdxÞ2 ð46Þ

When dx� 1/sex, exchange of protons between the two
sites is fast compared to the dephasing rate. Thus, the
rate determining step is the amount of dephasing in
the exchange time sex. As sex increases, the protons in
the two sites are dephased by a larger amount and
hence, the relaxation rates increase with sex as shown
by Eq. (46).
As mentioned earlier, this CE model is analogous to the
relaxation model in outer region of a paramagnetic
sphere. The protons may be considered either near the
sphere (site B) where there is a frequency shift of order
dx or far away where there is no shift (site A). The
exchange time from site B to site A is proportional to
the diffusional correlation time which is the time to dif-
fuse the length scale of field inhomogeneity. Thus, when
diffusional exchange between the two sites is fast com-
pared to dephasing rate (i.e. motionally averaging,
dx� 1/sR), relaxation rates increase with sR similar
to the predictions of the CE model.

2. Localization regime: Localization regime exists for
dxsR� 1 and large values of dxsE� 1. In this regime,
the relaxation rates show strong dependence on the echo
spacing. Additionally, the dependence of the relaxation
rate on sR (and thus, the particle size) is inversed in con-
trast to that in the motionally averaging regime. The CE
model also provides an explanation for the decrease in
relaxation rates with particle size in the localization
regime. When the condition dxsex� 1 holds, Eq. (45)
reduces to

1

T 2

ffi F B

sex

ð47Þ

Thus, the relaxation rates are inversely proportional to
sex in contrast to Eq. (46) for the motionally averaging
regime. For dx� 1/sex, dephasing rate is much larger
compared to the rate at which protons exchange
between sites A and B. Due to large dephasing, the pro-
tons are lost from the signal in a single exchange from
site A to site B [26]. Thus, the relaxation rate is deter-
mined by the rate at which protons exchange between
the two sites i.e. 1/sex. For relaxation by paramagnetic
spheres, a similar inverse dependence of relaxation rates
on sR (which is analogous to sex) is observed when
dxsR� 1.
The simulated relaxation rates in the localization regime
of Fig. 3 match well with the predictions of modified
MGDT (Eq. (27)) except at large values of dxsE and
dxsR. This deviation is probably because at large values
of parameters dxsE and dxsR, the contribution of the
inner region to the overall decay becomes substantial.
Thus, the assumption that the decay is only governed
by outer region in the derivation of Eq. (27) may not
be entirely valid.

3. Free diffusion regime: Free diffusion regime exists for
small echo spacings such that dxsE� 1 and
dxsE� dxsR. Due to effective refocusing by p pulses
in the free diffusion regime, the simulated relaxation
rates are significantly smaller than the ones in localiza-
tion or motionally averaging regimes. For dxsR > 1,
the relaxation rates show inverse dependence on the par-
ticle size similar to that in the localization regime.

The above mentioned characteristics of the asymptotic
regimes can be easily visualized in the (dxsR, dxsE) param-
eter space. Fig. 4 shows contour plots (solid curves) of sim-
ulated dimensionless relaxation rates in the (dxsR, dxsE)
domain. The contour plots differ by a factor of

ffiffiffiffiffi
10
p

.



Fig. 4. Contour plots of dimensionless secular relaxation rate in the
(dxsR, dxsE) parameter space. The contours differ by a factor of

ffiffiffiffiffi
10
p

. The
parameters used in the simulations are same as for Fig. 3. The dotted lines
are the corresponding plots for theoretically predicted relaxation rates
given by Eqs. (17), (23) and (27). The bold dashed lines are boundaries
between asymptotic regimes. The contours are invariant for dilute volume
fractions (U 6 1.25 · 10�4).
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Corresponding plots (dotted curves) for the theoretically
predicted relaxation rates given by Eqs. (17), (23) and
(27) are also shown in respective regions of validity. The
boundaries between the asymptotic regimes are shown by
dashed lines. In the motionally averaging regime
(dxsR� 1, dxsE� 1), the contour plots are almost paral-
lel to the dxsE axis implying that the relaxation rates are
independent of the echo spacing. Also, the rates increase
with dxsR showing that the secular relaxation increases
with particle size. In localization and free diffusion regimes,
the dependence of relaxation on dxsR is reversed and the
rates decrease with particle size. In addition, the rates are
echo spacing dependent in these regimes. The contours
are more closely spaced and have lesser slope in the free dif-
fusion regime than in the localization regime. Thus, the
dependence of the relaxation rate on the echo spacing is
higher in the free diffusion regime than in the localization
regime.

The echo spacing dependence of relaxation rates in the
free diffusion and the localization regime can also be quan-
tified. Fig. 5 shows the plot of simulated relaxation rates
with dxsE for cases in which dxsR� 1. The dashed line
shows the boundary dxsE = 1 between free diffusion and
localization regimes. The dotted and dash-dotted lines are
theoretically predicted relaxation rates in the two regimes
(Eqs. (23) and (27)). Relaxation rates show quadratic
dependence on the echo spacing in the free diffusion regime
as predicted by Eq. (23). However, the slopes of relaxation
rates decrease as the systems transition from the free diffu-
sion to the localization regime. Power-law fits of relaxation
rates with dxsE in the localization regime show that the
exponent of sE is approximately unity for low values of
dxsE (1 6 dxsE 6 15) and decreases to less than 0.6 for lar-
ger values of dxsE (102
6 dxsE 6 103). Thus, these simula-

tions show that non-quadratic dependence of relaxation
rates on the echo spacing can result in the localization
regime as has also been observed experimentally by several
researchers [27,28].

Since the theory is presented in dimensionless terms, the
plots in Figs. 3–5 are invariant under changes in parame-
ters such as magnetic susceptibility of the paramagnetic
sphere, diffusivity of the fluid, external magnetic field, etc.
However, the relaxation rates are invariant under changes
in volume fraction for only dilute volume fractions
(U 6 1.25 · 10�4). Simulations for different volume frac-
tions show that the average absolute deviation is less than
10% for U < 10�3. For U = 0.6, the average absolute devi-
ation is greater than 50% [29].

5. Experimental

This section experimentally illustrates the characteristics
of secular relaxation in porous media. We first describe
NMR measurements with aqueous dispersions of paramag-
netic particles of known sizes. These experiments help to
quantitatively estimate the characteristic time scales for
the paramagnetic particles. Next we describe NMR mea-
surements with model sandstones synthesized by coating
the paramagnetic particles on silica grains. These model
systems simulate secular relaxation in sedimentary rocks
in which field inhomogeneities are often induced due to
the presence of paramagnetic minerals and clays. Thus, a
conceptual understanding of paramagnetic relaxation in
porous media is developed based on theoretical and exper-
imental results.
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5.1. Paramagnetic particles in aqueous dispersions

1. Ferric ion: The smallest paramagnetic particle studied
was ferric ion (hydrated ionic diameter = 0.12 nm [20]).
Solutions of ferric chloride were prepared at various sol-
ute concentrations in 0.1 N Hydrochloric acid. Acidic
pH of the solutions prevents the formation of ferric
hydroxide. Proton longitudinal and transverse relaxa-
tion of the solutions was measured at 2 MHz and
30 �C. Fig. 6 shows T1 and T2 relaxation rates of the
aqueous solution of ferric ions as a function of the solu-
tion concentration. The relaxation rates of the solutions
increase linearly with the concentration. Furthermore,
the T1/T2 ratio is unity and no echo spacing dependence
of the transverse relaxation is observed. T1/T2 ratio of
unity suggests that the secular relaxation does not con-
tribute significantly to the transverse relaxation for ferric
ion solutions. This assertion is validated by the calcula-
tion of characteristic time scales shown later.

2. Magnetite nanoparticles coated with citrate ion: To
explore a larger length scale of field inhomogeneity, pos-
itively charged magnetite nanoparticles of different sizes
were synthesized in aqueous medium using Massart’s
Method [30]. The aim of synthesizing positively charged
nanoparticles is to adsorb them on the negatively
charged silica surface by columbic attraction. Thus,
relaxation characteristics of model sandstones with
paramagnetic particles adsorbed at different concentra-
tions can be studied.

The following experimental procedure was used to syn-
thesize aqueous dispersions of magnetite nanoparticles.
Ammonia solution was added dropwise to an aqueous mix-
ture of ferrous and ferric chloride till a gelationous precip-
itate (magnetite) was obtained. The precipitated magnetite
was washed with Perchloric acid which makes the particles
positively charged due to surface adsorption of protons.
The charged particles can then be dispersed in excess water
[30]. The size of the particles can be controlled by changing
the temperature of the reaction. Larger particles are
obtained at higher temperatures due to increased solubility
of smaller crystals. Two dispersions were synthesized with
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Fig. 6. Longitudinal and transverse relaxation rates (sE = 0.2 ms) of ferric
chloride solutions as a function of the concentration of the solution. No
echo spacing dependence of T2 relaxation is observed and T1/T2 ratio is
equal to unity.
average diameters of the particles equal to 25 and
110 nm. The 25 nm particles were synthesized at 10 �C
while 110 nm particles were synthesized at room tempera-
ture. Positively charged nanoparticles however, agglomer-
ate in external magnetic fields due to interparticle dipole
attractions. Therefore, the nanoparticles were stabilized
by adding 1 M Sodium Citrate in the volume ratio of 1%.
Stronger columbic repulsion between citrate-coated parti-
cles prevents them from agglomeration.

Proton relaxation rates of aqueous dispersions of the cit-
rate-coated particles were measured as a function of the
concentration. Fig. 7 shows the plots of longitudinal, trans-
verse and secular relaxation rates with the concentration of
the dispersion for the two particle sizes. Linear best fits of
the experimental points and the corresponding slopes are
also shown. Relaxation rates are linearly dependent on
the concentration of the dispersion and no echo spacing
dependence of T2 relaxation rates is observed. Addition-
ally, the T1/T2 ratio of magnetite dispersions is greater than
one and increases with the particle size. The calculations of
characteristic time scales mentioned in Section 6 show that
dispersions of submicron particles experience the motional-
ly averaging regime. Thus, no echo spacing dependence of
T2 relaxation is observed andT1/T2 ratio increases with the
particle size.

5.2. Paramagnetic particles on silica surface

NMR proton relaxation measurements with silica sand
coated with paramagnetic particles are described in this
section. Coated sand serves as a model to quantitatively
understand the paramagnetic relaxation mechanisms in
porous media. Sand is coated with paramagnetic particles
of various sizes and concentrations to illustrate the
transition of the relaxation regimes with the length scale
of field inhomogeneity.
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1. Fine sand coated with ferric ion: The following experi-
mental protocol was used to coat fine sand (Sigma
Aldrich, grain radius 50 lm) with paramagnetic ferric
ions. Fine sand was repeatedly washed with fresh
batches of hydrochloric acid to remove paramagnetic
particles originally present on grain surfaces. The sand
was then washed with deionized water and dried. A
known quantity of the dried sand was kept in contact
with acidic (pH 1) solutions of ferric chloride of known
concentrations for 24 h in a plastic bottle. The solid to
liquid ratio (gm sand/ml) of the slurries was kept at
1:10. Low pH (�7) of ferric solutions helps to prevent
the precipitation of hydroxides on the sand surface. To
ensure uniform coating, the slurries were constantly
rotated which prevents the sand from settling at the bot-
tom. After 24 h, the supernatant was removed and the
coated sand was repeatedly washed and saturated with
deionized water. This last step removes any remaining
ferric ions in the pore liquid. Thus, the relaxation of
the pore liquid can be attributed only to surface relaxa-
tion and to diffusion in internal field gradients.
The surface concentration of the ferric ions can be esti-
mated by measuring the quantity of ferric ions deposited
on a known surface area of sand as described. BET sur-
face area of sand (0.2 m2/g) was determined using N2

adsorption at 77 K. To estimate the deposited quantity
of ferric ions, relaxation time of the supernatant was
measured. Using the calibration between the concentra-
tion and relaxation rate of ferric chloride solution
(Fig. 6), the concentration of the supernatant can be
determined. The difference in the concentration of the
supernatant and the original coating solution multiplied
by the volume of the solution gives the quantity of ferric
ions deposited on the sand surface.
Fig. 8 shows T1 and T2 distributions of the water-satu-
rated sand coated with ferric ions at various surface con-
centrations expressed as surface area/ion. Both T1 and
T2 relaxation times decrease as the surface concentration
of Fe3+ ions increases. However, no echo spacing depen-
dence of T2 relaxation is observed and the T1/ T2 ratio of
coated sand is close to that of washed sand (1.26) at all
concentrations. Two important conclusions can be
deduced from these observations:
I. Surface relaxation increases as the concentration of

ferric ions on silica surface increases as shown by
the corresponding decrease in T1 and T2 relaxation
times. This conclusion is also consistent with the
observations that longitudinal and transverse
relaxivities of porous media increase with the concen-
tration of paramagnetic particles on pore surfaces
[19,31].

II. T2 relaxation due to dephasing in inhomogeneous
field induced by Fe3+ ions is negligible. Secular relax-
ation is proportional to the square of the size of para-
magnetic particle in the motionally averaging regime
(valid for Fe3+, Section 6) and is negligible for ang-
strom sized ferric ions.
These conclusions are however, contingent on the condi-
tion that paramagnetic particles are present in dilute sur-
face concentrations. Kenyon et al. [32] showed that
surface relaxivities obtain asymptotic values at high con-
centration of paramagnetic particles. Similarly, secular
relaxation can become significant at high concentration
of particles due to superposition of fields induced by indi-
vidual particles.
2. Fine sand coated with magnetite nanoparticles: Known

quantity of the fine sand was coated with positively
charged 25 and 110 nm magnetite particles by following
the same procedure as was used for coating ferric ions.
The concentrations of the coating dispersions were var-
ied to obtain different surface concentrations of magne-
tite. The coated sand was washed and saturated with
deionized water. Note that the coating is done with pos-
itively charged magnetite not coated with citrate ion.
Figs. 9 and 10 show the T1 and T2 distributions of
water-saturated fine sand coated with 25 and 110 nm
magnetite at different surface concentrations (surface
area/particle).
At low surface concentrations of either 25 or 110 nm par-
ticles no echo spacing dependence of T2 relaxation is
observed. At high concentrations however, echo spacing
dependence of T2 relaxation is observed for both cases.
This transition in echo spacing dependence can be
understood in terms of the length scales of field inhomo-
geneity. Fig. 1 shows that at low concentration, field
inhomogeneity extends to length scale comparable to
the size of paramagnetic particles. Thus, for submicron
paramagnetic particles, field inhomogeneities are
motionally averaged in time much smaller than sE

(sR < sE, Section 6) and T2 relaxation shows no echo
spacing dependence. At high concentrations, the parti-
cles form a shell around silica grains such that the length
scale of field inhomogeneity is comparable to the grain
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size (Fig. 2). Due to large size of the substrate silica
grain, field inhomogeneities are not motionally averaged
and hence, echo spacing dependence of T2 relaxation is
observed. A quantitative calculation of the characteristic
time scales is shown in Section 6 to corroborate these
assertions.

3. Fine sand with dispersed 2.4 lm magnetite: The length
scale of field inhomogeneity can also be increased by
increasing the size of the paramagnetic particle. Fine
sand was dispersed with 2.4 lm magnetite (Fischer Sci-
entific) dispersions of known concentrations. Fig. 11
shows T1 and T2 distribution of water-saturated fine
sand with dispersed 2.4 lm magnetite at two concentra-
tions. A strong dependence of transverse relaxation on
echo spacing is observed and the T1/T2 ratio is greater
than 2. These observations are also expected since the
field inhomogeneity for micron size particles is not
motionally averaged in time for echo formation.

4. Coarse sand coated with magnetite nanoparticles:
Another set of NMR experiments were performed with
coarse sand (Ottawa Sand 20/40 mesh) coated with mag-
netite nanoparticles. At high surface concentration of
paramagnetic particles, the range of Larmor frequencies
(dxshell) varies inversely with the radius of the substrate
silica grain (Eq. (29)). Thus, the transition of relaxation
regimes can also be quantitatively studied by changing
the size of the silica grain.

Coarse sand was washed with Hydrochloric acid to
remove any originally present paramagnetic minerals.
Washed sand was then coated with 25 nm magnetite parti-
cles by following the same procedure as was used for coat-
ing fine sand. Fig. 12 shows T1 and T2 distributions of
water-saturated coarse sand coated with 25 nm magnetite
at different surface concentrations. The distributions show
similar characteristics as that observed for coated fine sand.
At the lowest concentration (4 · 103 nm2/particle), no echo
spacing dependence of transverse relaxation is observed.
However, at high concentration (7 · 102 nm2/particle),
echo spacing dependence of T2 relaxation is observed.
These results suggest that the system transitions from the
motionally averaging regime at low concentrations to
either the localization or the free diffusion regime at higher
concentrations.
6. Paramagnetic relaxation in sandstones

A quantitative interpretation of the experimental results
in terms of characteristic time scales and asymptotic
regimes is described in this section. We first calculate the
characteristic time scales for paramagnetic ferric ions and
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magnetite nanoparticles in dispersion. These calculations in
turn help to quantify the relaxation characteristics of the
model sandstones.
Table 1
Characteristic time scales for the aqueous dispersions of ferric ions and
magnetite nanoparticles

Time scale (s) 0.12 nm Fe3+ 25 nm Magnetite 110 nm Magnetite

sR 3 · 10�11 6 · 10�8 10�6

sE,min 2 · 10�4 2 · 10�4 2 · 10�4

sx 2 · 10�4 8 · 10�8 3 · 10�7
6.1. Characteristic time scales for paramagnetic particles

As was described in Section 2, secular relaxation can be
characterized by three regimes depending on the shortest
characteristic time scale. In motionally averaging regime,
the secular relaxation rate is independent of the echo spac-
ing and increases with the particle size and concentration
(Eq. (17)). Similar relaxation characteristics are also
observed for aqueous dispersions of submicron paramag-
netic particles as shown in Figs. 6 and 7. Thus, it can be
hypothesized that proton relaxation in aqueous dispersions
of (submicron) paramagnetic particles experiences motion-
ally averaging regime. To prove the validity of the hypoth-
esis, characteristic time scales (sE,sR,sx) need to be
quantitatively evaluated. The value of sE is known from
the experimental measurements. In this study, the smallest
sE used was 0.2 ms. The diffusional correlation time (sR)
can be calculated from the radius of the paramagnetic par-
ticle (R0) and diffusivity of water at 30 �C
(�2.5 · 10�5 cm2/s) by using Eq. (11). Under the assump-
tion of motionally averaging regime, the expression for
the secular relaxation rate (Eq. (17)) can be used to esti-
mate dx for the magnetite nanoparticles as shown below.

1

T 2;sec

¼ 16

405
Udx2sR ¼

16dx2sR

405d
C ð48Þ

Here C is the concentration of the dispersion, and d is mag-
netite density. Thus, dx (rad/s) for the 25 and 110 nm mag-
netite dispersions can be evaluated from the slope (s) of the
plot between the secular relaxation rate and the concentra-
tion (Fig. 7) as
dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
405sdD

16R2
0

s
ð49Þ

sx is obtained as the reciprocal of dx. For ferric ions, dx
can be calculated from Eq. (10) using vFe3+ = 0.00046
[33] and cB0 = 2 MHz. Table 1 lists the characteristic time
scales for the different particles. For all cases, sR < sx and
sR < sE (except for 110 nm particle for which sR � sx) and
thus, the earlier hypothesis of motionally averaging regime
is justified.

The condition sR < sE implies that the magnetic field
inhomogeneities are motionally averaged in time shorter
than sE. Thus, no dependence of T2 relaxation on echo
spacing is observed for the aqueous dispersions of ferric
ions and magnetite nanoparticles. Additionally, secular
relaxation rate is proportional to the square of the radius
of the paramagnetic particle in the motionally averaging
regime (Eq. (17)). Due to small size of the ferric ion, secular
relaxation contributes negligibly to the transverse relaxa-
tion and thus, the T1/T2 ratio of ferric solutions is unity.
(This is true for low magnetic fields such that dxsR < 1).
Secular relaxation however, increases for the larger parti-
cles and contributes significantly to the T2 relaxation.
Thus, the T1/T2 ratio of magnetite dispersions increases
with the particle size.

6.2. Relaxation regimes in sandstones

The relaxation time distributions of model sandstones
shown in Figs. 8–12 illustrate the transition of relaxation
regimes with change in governing parameters such as the
size and concentration of paramagnetic particles. This
transition of relaxation regimes can be interpreted by
employing the calculations of characteristic time scales of
Table 1.

1. Motionally averaging regime: This regime is experimen-
tally observed for fine sand coated with ferric ions and
for fine and coarse sand coated with 25 and 110 nm mag-
netite particles at low concentrations. For these cases, no
echo spacing dependence of T2 relaxation is observed
and the T1/T2 ratio is higher than that of washed sand
(except for Fe3+ coated sand). At low surface concentra-
tions, superposition of internal fields induced by individ-
ual particles is insignificant (Fig. 1). Thus, protons in the
pore fluid dephase as if diffusing in internal field induced
by individual particles. Since sR is the shortest character-
istic time for the submicron particles (Table 1), field
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inhomogeneities are motionally averaged and no echo
spacing dependence is observed. The T1/T2 ratio is
higher than that of washed sand due to additional con-
tribution of secular relaxation to T2 relaxation.
These experimental results also explain the wide range of
the T1/T2 ratio in sandstones with no echo spacing
dependence of the T2 relaxation [34,35]. In motionally
averaging regime, secular relaxation increases with the
size and susceptibility of the paramagnetic particle (Eq.
(17)). Thus, the presence of paramagnetic minerals of
various sizes and susceptibilities on pore surfaces of
sandstones can result in a range of T1/T2 ratio. Since
the diffusional correlation time is much shorter than
the time for echo formation in this regime, no echo spac-
ing dependence of the T2 relaxation would be observed.
An important conclusion is that the lack of echo spacing
dependence of transverse relaxation does not necessarily
imply that relaxation is not influenced by diffusion
effects.

2. Free diffusion regime: Free diffusion regime of secular
relaxation arises when half echo spacing is the shortest
characteristic time compared to sR and sx. The condi-
tions for free diffusion regime can be satisfied in sedi-
mentary rocks at high surface concentration of
paramagnetic particles on silica grains. At high surface
concentrations, paramagnetic particles form a shell
around silica grains such that the field inhomogeneity
extends to large distances proportional to the grain size
(Fig. 2). In addition, the range of Larmor frequencies is
reduced (compared to that for a single particle) by a fac-
tor 3e/Rg due to superposition of fields (Eq. (29)). Con-
sequently, sR and sx increase and may become larger
than sE for appropriate system parameters.
The free diffusion regime is observed experimentally for
fine sand coated with 110 nm magnetite and coarse sand
coated with 25 nm magnetite at surface concentrations
1.5 · 106 and 7 · 102 nm2/particle, respectively. Table 2
lists the characteristic time scales for the two cases. sx

is obtained from the reciprocal of dxshell (Eq. (29)) where
the thickness of the shell is calculated such that the vol-
ume of the shell is the same as the total volume of par-
ticles deposited on a single silica grain. sR is calculated
using Eq. (5) where the length scale of inhomogeneity
(L) is assumed to be the radius of the interstitial pore
between silica grains (Eq. (30)). For both cases, sE is
the shortest time scale and thus, the conditions for free
diffusion regime are satisfied. Fig. 14 shows that echo
Table 2
Time scales for relaxation in coarse sand coated with 25 nm (7 · 102 nm2/
particle) and fine sand coated with 110 nm magnetite (1.5 · 106 nm2/
particle)

Time scale (s) 25 nm 110 nm

sR 1.07 0.05
sE,min 2 · 10�4 2 · 10�4

sx 9 · 10�4 1.3 · 10�3
spacing dependence of the secular relaxation rates in
the free diffusion regime is approximately quadratic as
predicted by Eq. (23).

3. Localization regime: Localization regime arises when
the time for significant dephasing (sx) is the shortest
characteristic time. This condition can also be satisfied
at high surface concentrations of paramagnetic parti-
cles if the frequency range for spherical shell is large
such that sx (reciprocal of dx) is short compared to
sR and sE.

Localization regime is experimentally observed for fine
sand coated with 25 nm (3 · 103 nm2/particle) and
110 nm (3 · 105 nm2/particle) at the highest surface con-
centrations. Table 3 shows the characteristic time scales
for the two cases. (Time scales sx and sR are calculated
using the same method as that used for the free diffusion
regime). For both cases, the conditions for localization
regime (sx < sR and sx < sE) are satisfied. Localization
regime can also be observed for relaxation in the presence
of large paramagnetic particles with large diffusional corre-
lation time. This is the case for relaxation in fine sand with
dispersed 2.4 lm magnetite (Fig. 12). The values of the
characteristic times for 2.4 lm magnetite are also men-
tioned in Table 3 (dx is assumed to be same as that for
110 nm particles). The conditions for localization regime
are again satisfied and thus, echo spacing dependence of
transverse relaxation is observed.

An example of localization regime is transverse relaxa-
tion in North Burbank (NB) sandstone with macropores
lined with chlorite clay flakes. Large field gradients are con-
centrated around the sharp corners of the clay flakes and in
the micropores between clay flakes. The gradients also
extend considerably in the macropore although the
strength is not as high as in micropores [36]. Fluid mole-
cules in the micropores and macropores are, however, cou-
pled by diffusion [37]. Thus, in general, the molecules
experience gradients that are intermediate to those in the
micro and macropores. Fig. 13 shows the T1 and T2 distri-
butions of a water-saturated North Burbank sandstone
core. Once again, a large T1/T2 ratio is observed and the
T2 distributions show echo spacing dependence.

The values of characteristic time scales need to be eval-
uated to characterize the relaxation regime in the North
Burbank sandstone. The pore size distribution obtained
from mercury porosimetry [37] shows that the average
Table 3
Time scales for systems experiencing the localization regime

Time scale (s) 25 nm 110 nm 2.4 lm NB

sR 0.05 0.05 6 · 10�4 0.2
sE,min 2 · 10�4 2 · 10�4 2 · 10�4 1.6 · 10�4

sx 5 · 10�5 5 · 10�5 3 · 10�7 5 · 10�5

The surface concentrations for coated sand experiments are 25 nm (3 · 103

nm2/part), 110 nm (3 · 105 nm2/part.) and 2.4lm magnetite (3 · 1014 nm2/
part, 9 · 1013 nm2/part.).
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macropore radius (Rp) is 24 lm assuming a pore-body to
pore-throat ratio of 3. Thus, the diffusional correlation
time (sR) is equal to 0.2 s using Eq. (7). For a pore with
average gradient g, the range of frequencies is given as

dx � 2cgRp ð50Þ

From the numerical calculations of Zhang et al. [36], dx for
North Burbank is estimated to be 2 · 104 rad/s. Since
sE P 10�4 s, both conditions for the localization regime
(dxsR� 1, dxs E� 1) are satisfied for the core. The char-
acteristic time scales are mentioned in Table 3.

Fig. 14 summarizes the echo spacing dependence of the
experimental systems in the free diffusion and/or localiza-
tion regime on the plot of the secular relaxation rates with
dxsE. The dashed line is the boundary dxsE = 1 delineating
the two regimes. The solid lines are the regression lines for
the power-law fits between the relaxation rates and dxs E.
The relaxation rates show approximately quadratic depen-
dence on dxsE in the free diffusion regime (dxsE < 1). In
contrast, the dependence of relaxation rates on dxsE is less
than linear in the localization regime (dxsE > 1). This less
than linear dependence of the secular relaxation rates on
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Fig. 14. Plot of secular relaxation rates with dxsE for experimental
systems in free diffusion and localization regimes. The relaxation rates
show nearly quadratic dependence on echo spacing in the free diffusion
regime and less than linear dependence in the localization regime.
sE in the localization regime was also illustrated in the
numerical simulations of Section 4 (Fig. 5). These results
can also explain the initially linear echo spacing depen-
dence of transverse relaxation rates in porous media
observed by Brown et al. [27] and Fantazzini et al. [28].
Power-Law fits between the simulated relaxation rates
and dxsE in the localization regime of Fig. 5 show that
the echo spacing dependence is nearly quadratic for small
values of dxsE (1 < dxsE < 5). However, the dependence
is less than linear for higher values of dxsE

(102 < dxsE < 103). Thus, a linear dependence on echo
spacing can be observed for intermediate values of sE in
the localization regime.

The relaxation characteristics of the experimental sys-
tems can be summarized on the contour map of dimension-
less secular relaxation rates in (dxsR, dxsE) parameter
space. The dimensionless rates for the experimental systems
are estimated by normalizing the dimensional secular relax-
ation rates (Eq. (1)) by the characteristic rate (1/t0) as
shown

1

T D
2;sec

¼ 1

T 2;sec

1

t0

	
¼ 1

T 2

� 1

T 1

� �
3

Udx

� �
ð51Þ

The longitudinal and transverse relaxation times are ob-
tained from the modes of corresponding T1 and T2 distri-
butions. Four parameters dx, sR, sE, U are required for
the calculation of dimensionless rates and the correspond-
ing coordinates (dxsR, dxsE). The parameters dx, sR and
sE are obtained from Tables 1–3 (dx = 1/sx). The para-
magnetic volume fraction U is equal to 0.6 at high surface
concentrations of paramagnetic particles and is equal to
the ratio of paramagnetic particles to total volume at low
concentrations. Fig. 15 shows the dimensionless secular
relaxation rates in the (dxsR, dxsE) parameter space for
the experimental systems. The relaxation rates for magne-
tite dispersions and sand coated with paramagnetic parti-
cles at low concentrations are compared with the
simulations for U 6 1.25 · 10�4 (upper panel). The relaxa-
tion rates for sand coated with higher concentrations of
paramagnetic particles and North Burbank are compared
with simulations for U = 0.6 (lower panel). (For the simu-
lations with U = 0.6, field distribution is specified by Eq.
(28) for a paramagnetic shell of susceptibility 0.2 (SI units)
and assuming 3e/Rg = 10�3. The relaxation rates can not
be simulated for dxsE > 50 due to dephasing of random
walkers). A good quantitative agreement between the the-
oretically predicted rates and experimentally measured
rates is observed for all cases.

The relaxation characteristics of the experimental sys-
tems in Fig. 15 can be explained in terms of the asymptotic
regimes. The aqueous dispersions of nanoparticles and fine
and coarse sand coated with 25 and 110 nm at low surface
concentrations (*,· symbols) experience motionally averag-
ing regime. Thus, no echo spacing is observed. Experiments
with fine sand coated at high concentrations of 25 nm
(open and closed triangles) and 110 nm (open and closed
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squares) lie in localization and free diffusion regimes. Sim-
ilarly, coarse sand coated with 25 nm at high concentration
(closed diamonds) lie in free diffusion and localization
regimes. Thus, echo spacing dependence of the T2 relaxa-
tion is observed for these cases. North Burbank sandstone
(solid circles) and fine sand with dispersed 2.4 lm magne-
tite (inverted triangles) also fall in localization regime and
display an echo spacing dependence. The average absolute
deviation between the experimental and simulated values is
less than 80% which means that, on an average, the theory
predicts secular relaxation rates within the right order of
magnitude.

7. Conclusions

The loss of phase coherence between nuclear spins due
to diffusion in magnetic field inhomogeneities leads to addi-
tional transverse relaxation called ‘‘secular’’ relaxation. A
generalized relaxation theory is proposed which identifies
three characteristic time scales governing secular relaxa-
tion: diffusional correlation time (sR), time for significant
dephasing (sx) and half echo spacing of the CPMG
sequence (sE). The characteristic time scales can be defined
for a general inhomogeneous field distribution. Depending
on the shortest time scale, secular relaxation can be classi-
fied in three asymptotic regimes of motionally averaging,
localization and free diffusion.

The asymptotic regimes show different relaxation char-
acteristics. In motionally averaging regime, field inhomoge-
neities are averaged due to fast diffusion in time much
shorter than sE. Thus, no echo spacing dependence of sec-
ular relaxation is observed. In free diffusion regime, sE is
the shortest time scale. Secular relaxation rates show qua-
dratic dependence on echo spacing in this regime. Localiza-
tion regime is characterized by sx as being the shortest time
scale. A sub-linear echo spacing dependence of secular
relaxation is observed in this regime. In contrast to motion-
ally averaging regime, relaxation rates in free diffusion and
localization regimes are inversely dependent on the length
scale of inhomogeneity. The characteristics of the relaxa-
tion regimes can be demonstrated in a single contour
map of dimensionless relaxation rates in (sR/sx, sE/sx)
parameter space.

The classification of secular relaxation in asymptotic
regimes provides conceptual understanding of relaxation
characteristics of porous media. Experiments with sand
coated with submicron paramagnetic particles show that
the systems transition from the motionally averaging
regime at low surface concentrations to either the free dif-
fusion or the localization regime at high surface concentra-
tions. Thus, echo spacing dependence of T2 relaxation is
observed only at sufficiently high surface concentration of
paramagnetic particles. This transition in relaxation
regimes occurs because the length scale of field inhomoge-
neity increases at high surface concentrations due to super-
position of fields induced by neighboring particles. The
relaxation characteristics of asymptotic regimes can also
provide explanation for the diverse NMR characteristics
observed in fluid-saturated sandstones. A large range of
T1/T2 ratio in sandstones with no echo spacing dependence
of T2 relaxation observed by Kleinberg et al. [34] can arise
in the motionally averaging regime. The quasi or sub-linear
dependence of the T2 relaxation on echo spacing shown in
experiments of Fantazzini et al. [28] can arise in the local-
ization regime. Thus, the estimation of characteristic time
scales provides quantitative understanding of paramag-
netic relaxation in sandstones.
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Appendix. Numerical integration of Bloch equation

A continuous random walk algorithm [22] is applied to
model T2 relaxation of spins (Eqs. (40)–(43)) diffusing in an
inhomogeneous internal field Bdz(r,h). Random walkers
are initially distributed uniformly in an annular region out-
side a spherical paramagnetic particle. The walkers start with
a zero initial phase. In dimensionless time step dt*, the nth
walker at a position (r*,h) accumulates a phase of
D/n = x*(r*,h)dt*. The dimensionless Larmor frequency
x* is obtained by normalizing the Larmor frequency
x = cBdz with the characteristic rate (1/t0) as shown below

x�ðr�; hÞ ¼ xðr; hÞ
1=t0

¼ ð3 cos2 h� 1Þ
r�3

ðA:1Þ

After every time step dt*, the stochastic diffusion of a
walker is simulated by choosing a random displacement with
zero mean and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NDdt�
p

in the x, y and z

directions in Cartesian coordinates. The clock in incre-
mented by dt* after every time step. At the time of the appli-
cation of p pulses t� ¼ s�E; 3s�E; 5s�E; . . ., the phase of all
random walkers is inverted. Perfect reflection at the inner
and outer boundaries is simulated by returning the walker
to the same position if the next displacement takes it outside
the boundaries. The echo intensity at times t� ¼ 2s�E;
4s�E; 6s�E; . . . is evaluated by averaging the phase of all walkers

Mðt�Þ ¼ 1

N

XN

n¼1

expði/nðt�ÞÞ ðA:2Þ

where N is the number of walkers and /n(t*) is the phase
of the nth walker at time t*. The dimensionless relaxation rate
is calculated from the slope of exponential fit to the simulated
echo intensities. However, the magnetization decay is multi-
exponential for simulations such that dxsR > 1000. For such
cases, the relaxation rate is calculated from the slowest com-
ponent of the multi-exponential decay. There are two simu-
lation parameters which should be appropriately chosen to
ensure the accuracy of the solution:

1. Number of walkers: Number of walkers determines the
statistical noise in the simulations. Simulations with dif-
ferent number of walkers show that N=10,000 gives a
good accuracy (<1% average absolute deviation from
the analytical solutions) and a reasonable amount of
computational time.

2. Time step (dt*): The value of the time step should be chosen
such that the dimensionless time step dt* is less than the
(normalized) characteristic time scales of the system.
dt� � sR

t0

; dt� � sx

t0

; dt� � sE

t0
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